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Redox chemistry of an anionic dithiolene radical†
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The redox chemistry of the first stable anionic dithiolene radical 1•

was investigated by both reactivity and cyclic voltammetry studies.

While one-electron reduction of 1• by Cp2Co or KC8 affords the

corresponding dithiolate dimers 2 and 3, respectively, one-

electron oxidation of 1• by Ph3C
+BF4

− (or O2) conveniently gives 4,

the neutral dithiolene dimer.

Largely due to unusual optical, conductive, magnetic, and bio-
inspired properties, studies of transition metal dithiolene com-
plexes may be traced to the 1960s.1–13 While molybdenum–

and tungsten–dithiolene complexes have shown enzymatic
activity,2,5,12 other transition metal bis-dithiolenes have
demonstrated remarkable potential as optoelectronic
materials.4,7,10,11 The non-innocent nature of dithiolene
ligands (Fig. 1) plays a pivotal role in the intriguing redox
chemistry of transition metal dithiolenes.3

While the radical character of dithiolene ligands (L•−) in
transition metal complexes was well documented,8,15–27 highly
reactive transition metal-free anionic dithiolene radicals have
only been investigated using theoretical methods and electron
paramagnetic resonance.28–31 Notably, the electronic absorp-
tion spectrum of the prototype anionic dithiolene radical
(C2H2S2

•−) was studied in a low-temperature matrix.32

Recently, the first structurally characterized anionic dithiolene
radical 1• was synthesized by this laboratory via trisulfurization
of the corresponding anionic N-heterocyclic dicarbene33

(Scheme 1).34 It was anticipated that this discovery could
provide a unique platform for accessing the largely unexplored
chemistry of main group dithiolene radicals (e.g., boron dithio-
lene radicals were achieved via 1•).35 Moreover, the consider-
able stability of 1• could be advantageous for probing the
redox chemistry of dithiolene radical anions (L•− in Fig. 1). To

this end, we report the syntheses,36 molecular structures36 and
computations36 of compounds 2, 3, and 4, all obtained via
one-electron redox reactions of 1•.

The cyclic voltammogram of 1• was recorded in THF (Fig. 2),
potentials are reported versus an internal ferrocene/ferroce-
nium (Fc/Fc+) standard. While both reversible and quasi-
reversible redox events have been documented for transition
metal dithiolene complexes,37,38 radical 1• exhibits two electro-
chemically quasi-reversible, diffusion-controlled couples at
E1/2 = −0.78 V (ΔEp = 0.21 V) and E1/2 = −1.47 V (ΔEp = 0.25 V),
which are assigned to [L0/L•−] and [L•−/L2−] ligand reduction
events, respectively. Indeed, with increasing scan rate
(Fig. S1†),36 the cathodic-anodic peak separations (ΔEp)
increase and meanwhile cathodic peak potentials (Epc) shift
negatively. The one-electron reduction/oxidation of 1• involves
adding/removing one electron from the SOMO,2 which is com-
parable to that for neutral odd-electron 1,2-dithioles.39 The
small irreversible reduction at −1.13 V may be a result of
certain chemical transformations, such as radical coupling to
yield dithiete or dimer of L0. The 1 : 1 reaction of 1• with cobal-
tocene (Cp2Co), a well known one-electron reducing agent,40

quantitatively affords dimeric dithiolate 2 (as a green powder)
(Scheme 2). Compound 2 is insoluble in toluene, slightly
soluble in THF, and moderately soluble in acetonitrile.
Although turquoise-coloured X-ray quality crystals of 2 were
obtained from acetonitrile, the significantly broadening of the
1H NMR spectrum pattern of 2 in CD3CN and THF-d8 suggests
the partial dissociation of 2. Consequently, ideal NMR data of
2 could not be obtained in polar solvents. In addition, potass-
ium graphite (KC8) reduction of 1• in THF quantitatively pro-
vided the lithium-potassium mixed alkali metal dithiolate

Fig. 1 Redox non-innocence of a dithiolene ligand.14

†Electronic supplementary information (ESI) available: Synthetic and compu-
tational details and structural and spectral characterization. CCDC
1881413–1881415. For ESI and crystallographic data in CIF or other electronic
format see DOI: 10.1039/c8dt04989k
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dimer 3 (Scheme 2). However, the presence of trace amounts
of O2 result in the oxidation of 3, yielding unidentified pro-
ducts with the colour change from colourless to purple.

Reaction of 1• with Ph3C
+BF4

− (in a 1 : 1 ratio) in toluene
leads to one-electron oxidation of 1•,40 giving orange-red crystals
of 4 (a dimer of the neutral dithiolene ligand; L0 in Fig. 1) in
55.3% yield (Scheme 2). Alternatively, 4 may also be obtained by
dioxygen oxidation of 1•. Notably, compound 5, the analogue of
4, has been synthesized as previously reported via two unique
routes (Scheme 3): (1) sulfurization of imidazole-based dione
with Lawesson’s reagent;41,42 and (2) oxidation of the nickel
bis-dithiolene complex by Br2.

41,43 Compounds 4 and 5 may
serve as convenient platforms to access metal dithiolene
complexes via reductive cleavage of the S–S bonds.43

X-ray structural analysis36 of 2 (Fig. 4) shows that the [2]2−

moieties contain two lithium dithiolene units dimerized
through two Li–S bonds. With THF-coordination, each lithium
atom is four-coordinate and adopts a distorted tetrahedral geo-
metry. The central Li2S2 ring is planar, in which the bridging
Li–S bond [2.396(15) Å] is ca. 0.13 Å shorter than those in the
neighbouring LiS2C2 ring [2.525(16) Å]. The LiS2C2 rings in 2
are somewhat more bent than that in 1• [the bend angle (η)
between the LiS2 plane and the S2C2 plane = 17.6° for 2 vs.
14.2° for 1•].34 By comparison with 1• [dC–C = 1.417(3) Å; dC–S =
1.677(3) Å, av],34 compound 2 exhibits shorter olefinic C–C
bonds [1.362(8) Å] and concomitant longer C–S bonds
[1.729(8) Å, av]. These distances compare well to those for the
free dithiolate ligand (NMe4)2(C3S5)

44 [dC–C = 1.371(8) Å; dC–S =
1.724(6) Å] and the theoretical values for the simplified
[2-Me]2− model (dC–C = 1.375 Å; dC–S = 1.754 Å).36 The ligand-
based HOMO of dimeric dithiolate [2-Me]2− (Fig. 3b) mainly
involves C–C π-bonding and C–S π-antibonding character,
which is relevant to the SOMO of its radical precursor
[1-Me]• 36 (Fig. 3a) and consistent with the C–C and C–S bond

Scheme 1 Previously reported synthesis of 1• (R = 2,6-diiso-
propylphenyl).34

Fig. 2 Cyclic voltammogram of 1• (6.45 mM) with Fc internal standard
(4.5 mM; E1/2 set to 0 V) in THF (scan speed: 100 mV s−1, 0.1 M nBu4NPF6
supporting electrolyte, glassy carbon working electrode, Pt-wire
counter electrode, RT). Arrow indicates direction of the scan.

Scheme 3 Previously reported synthetic routes of 5.41–43

Scheme 2 Synthesis of compounds 2, 3, and 4 (R = 2,6-
diisopropylphenyl).

Fig. 3 Selected molecular orbitals of the simplified models [1-Me]• (a)
and [2-Me]2− (b).
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distance change of the C2S2 units in 2 in comparison with
those for 1•.34 Similar to that in [1-Ph]•,34 the LiS2C2 rings in
[1-Me]• and [2-Me]2− are nearly planar in the gas phase.

Compound 3 is a Li–K mixed metal dithiolate dimer in the
solid state.36 The central [C2S2Li(THF)]2 core in 3 shows
similar geometry and bonding parameters to that in 2 (see the
caption of Fig. 4). The potassium cation in 3 is σ-bonded to a
sulphur atom and coordinated to three THF molecules. The
potassium-phenyl centroid distance (2.990 Å) in 3 compares
well with that [3.034(9) Å] in [{K{(2,6-iPr2C6H3N)2CH}2K
(THF)2}n]·nTHF,45 which suggests the presence of cation–π
interaction between the potassium cation and the phenyl
ring.46 The S–K bond distance for 3 [3.1490(13) Å] is compar-
able to that in [{Ce(Cp*)2(dddt)K(thf)2}2] (dddt = 5,6-dihydro-
1,4-dithiin-2,3-dithiolate)47 [3.26(5) Å] and in the simplified
model 3-Ph (3.210 Å).36 The Wiberg bond indices of the K–S
bonds in 3-Ph are 0.11, suggesting their strong ionic character.
In the solid state,36 the central eight-membered C4S4 ring of 4
(Fig. 4) adopts a chair conformation as suggested by torsion
angles [i.e., C(2)–S(2)–S(3A)–C(3A), 97.81°; C(2)–C(3)–S(3)–
S(2A), 75.50°], which are similar to those reported for 5 [C–S–
S–C, 101.8(6)°; S–S–C–C, −82(1) and 79(1)°].42 The C–C bonds
[1.348(3) Å] and C–S bonds [1.739(2) Å] in the C2S2 units of 4
are also similar to those in 5 [dC–C = 1.36(2) Å; dC–S = 1.75(1) Å,
av].42 The S–S bond in 4 [2.0728(9) Å] is a typical single bond,
involving predominant 3p character (92.50%).36

Conclusions

While reactions of stable lithium dithiolene radical 1• with
Cp2Co or KC8 give the corresponding one-electron reduction
product 2 and 3, respectively, combination of 1• with
Ph3C

+BF4
− (or O2), via one-electron oxidation, leads to the iso-

lation of 4. Further application of these neutral (4), mono-
anionic (1•), and dianionic (3) dithiolene species in main
group chemistry is being investigated in this laboratory.
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