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ABSTRACT: A new molecular system for nitrogen reduction, involving a 2,3′-
bipyridine-anchored, end-on-bridging dinitrogen complex of the Me2B−BMe2
intermediate (4), has been explored by theoretical methods. The 2,3′-
bipyridine-mediated cleavage of the Bsp3−Bsp3 bond in 4 may lead to transient
electron-rich sp3-hybridized boron species and subsequent activation of the
strong N≡N triple bond of the complexed N2. Through a boryl transfer
sequence, a catalytic cycle may be achieved for the reductive addition of
diboranes to a dinitrogen molecule with an energy span of 23 kcal/mol. In
addition, the reaction is exothermic by 80.5 kcal/mol, providing a substantive
chemical driving force.

■ INTRODUCTION

Due to the nonpolarity and extremely high bond energy of the
N≡N triple bond (ca. 225 kcal/mol),1 molecular nitrogen
(N2) (making up appropriately 78% of air) is unusually stable.
Nitrogen-fixation, reducing molecular nitrogen to ammonia, is
achieved naturally by nitrogenases via multiple proton−
electron transfers.2−4 The industrial Haber−Bosch process,
utilized for the conversion of N2 and H2 to NH3, supports half
of all global food production. However, this process is
conducted under harsh reaction conditions (350−550 °C
and 150−350 atm) and consumes about 2% of the annual
worldwide energy production.5,6 In the context of energy and
climate change challenges, the development of energy-efficient
and environmentally benign strategies for N2 reduction
reaction (NRR), such as electrocatalytic N2 reduction, is
highly desirable and being actively investigated.7−9 However,
to date, all electrochemical NRRs suffer from low yield rates
(TON < 100) and poor selectivity, due to the competitive
2H+/2e− hydrogen evolution reaction.10,11 In order to improve
the efficiency of NRR, many other methods, including
biological and biomimetic approaches,12 heterogeneous
thermocatalytic processes,13 photocatalytic processes,14−16

and plasma-mediated N2 fixation17 have been explored.
Although considerable progress has been made, it is important
for scientists to develop more efficient methods for NRR.18,19

Transition metal-based N2 fixation and activation involves
not only σ-donation of the lone pair of electrons of N2 into
empty d orbitals but also π-back-donation of filled d orbitals of
the metal center into the unoccupied π* orbital of N2 (i.e.,
Dewar-Chatt-Duncanson bonding model) (Scheme 1a).20,23

The π-back-donation weakens the N−N bond and thus plays a
key role in N2 activation. A series of Mo and Fe molecular
catalysts for NRR, through the addition of 6H+/6e− into a

weakened dinitrogen ligand, have been documented.24−27 The
Chatt-type (distal) and alternating pathways have been
proposed for mechanistic outlines.28−30 In contrast to
electron-rich transition metals, high-oxidation-state uranium-
(V) is electron-poor (with only one 5f valence electron) and
thus not a good candidate for N2 binding. However, recently,
Liddle and co-workers achieved a rare end-on uranium(V)-
dinitrogen complex by utilizing both cooperative hetero-
bimetallic uranium−lithium effects and electron-rich ancillary
ligands that result in back-donation of the uranium(V) ion into
π* orbital of N2.

31

Due to their low cost and wide abundance, main group
elements have been employed to mimic transition metals in
small molecule activation and even potential catalytic
applications.32 Dinitrogen complexation with main group
radicals has been probed by the electron paramagnetic
resonance (EPR) technique.33 Indeed, Braunschweig and co-
workers21 discovered that carbene-complexed dicoordinate
borylene, as a transient electron-rich B(I) species, may mimic
transition metals to reduce dinitrogen via p → πNN*
backbonding interactions (Scheme 1b). Subsequent to the
discovery of borylene-mediated N2 reduction,21 a series of
boron-doped two-dimensional materials have been explored as
metal-free electro- or photocatalysts for N2 reduction by both
experimental and theoretical methods.34−41 Notably, a
theoretical study proposed that the sp3-hybridized boron
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atom, decorated on the optically active graphitic-carbon nitride
(B/g-C3N4), may enable solar-driven N2 fixation.

22 In this case,
one vacant and one occupied sp3-hybridized orbital of the
boron atom give rise to the bonding interactions with N2
(Scheme 1c). While diboranes without π-donating function
(such as H2B−BH2) may weakly coordinate N2 to provide
traditional Lewis adducts,42−45 diborane(4)-based N2 reduc-
tion reactions have yet to be reported. Inspired by recent silico
reaction discoveries,46,47 we demonstrate our theoretical study
on 2,3′-bipyridine-mediated N2 reduction by a diborane(4),
namely, Me2B−BMe2.

■ COMPUTATIONAL METHODS
This research was carried out with the DFT ωB97X-D48 method
using the Gaussian 09 programs.49 All the structures were optimized
in benzene solvent (with a low dielectric constant; ε = 2.2706) using
the SMD (Solution Model based on Density) solvation model. The 6-
311++G** basis sets were used in the geometry optimization.50,51 All
transition states were confirmed to exhibit only one imaginary
frequency via Hessian analyses. Intrinsic reaction coordinate (IRC)
calculations were performed to confirm that all transition states
connect the two related minima. The wave function stability was
checked for all the stationary points, and the wave functions of all
structures, including minima and transition states, are found to be
stable. The present transformation involves a multicomponent
change; thus, entropy overestimations must be taken into
account.52−54 In this study, translational movement was evaluated
using the method presented by Whitesides and co-workers.55 Natural
bond orbital (NBO) analyses were performed using the NBO 6.0
program.56 We have thoroughly examined the conformational space
of each intermediate and transition state, and the lowest energy
conformers are included in the discussion. The Cartesian coordinates
of all optimized structures are presented in the Supporting
Information.

■ RESULTS AND DISCUSSIONS
Pyrazines have been reported to undergo addition of B−B
bonded boron reagents. After that, 4,4′-bipyridines-catalyzed
diboration of sterically demanding pyrazines has been
achieved.55 These discoveries suggest that nitrogen-containing
bases may not only conduct reductive addition by cleaving the
boron−boron bond of diborons but also readily release the
boryl groups to pyrazine subtrates.57−59 Herein, we propose a
novel strategy for NRR through an unusual N2 activation mode
(Figure 1). This strategy involves building an interconnected
bis(Lewis base)-anchored, end-on-bridging dinitrogen complex
of diboranes(4) (Figure 1c), which may subsequently undergo
catalytic tetraboration of dinitrogen.
In the present study, 2,3′-bipyridine 1 was selected as the

bis(Lewis base)-anchor ligand because its N⋯N distance is

suitable to intermediates such as structure 4, while Me2B−
BMe2 was chosen as a diborane model (Figure 2). With two
anchor sites (i.e., nitrogen atoms), 1 can bind two Me2B−
BMe2 molecules through classical donor−acceptor bonds to
give 2, which is predicted to be exothermic by 9.1 kcal/mol.
Notably, the two terminal boron atoms in 2 are sp2 hybridized
and thus form a suitable borane pocket for the capture of one
dinitrogen molecule. The dinitrogen molecule coordination
proceeds in a stepwise manner. Consequently, intermediate 3
with an end-on N2 ligand is generated first (Figure 2).
Through the transition state TS3−4, the N2 ligand in 3 binds
to the other terminal Bsp2 atom in an end-on fashion, providing
the Lewis-base-anchored diborane-(μ−η1:η1-N2) complex 4.
The energy span for the assembly of 4 is 22.6 (= 9.1 + 13.5)
kcal/mol. This suggests that the intermediates 4 may exist
under mild conditions. Although the classical energy (ΔE) of
TS3−4 is higher than 4 by 1.4 kcal/mol, the Gibbs free energy
(ΔG) for TS3−4 is 0.3 kcal/mol lower than that of 4. The
B1−B2 distance in 4 is 1.883 Å (Figure 3), which is
significantly longer than that in free Me2B−BMe2 molecule
(1.678 Å), suggesting that the synergetic coordination of 2,3′-
bipyridine and N2 would favor cleavage of the B−B bond of
Me2B−BMe2. The B−B cleavage of Me2B−BMe2 across two
nitrogen atoms of 1 was also investigated. The generated 9
(Figure S1 in Supporting Information) is less favored than 2.
Our results for the Bsp3−Bsp3 bond cleavage in 4 are shown

in Figure 4. Due to the lability of the Bsp3−Bsp3 bond in 4, its

Scheme 1. Schematic Representations of the End-on Bonding Modes in Transition Metal N2 Complexes (a),20 Dicoordinate
Borylene N2 Complexes (b),21 and Single sp3-Hybridized Boron Atom (Decorated on g-C3N4) N2 Complexes (c)22

Figure 1. Proposed bis(Lewis-base)-catalyzed tetraboration reaction
of N2. Structure (a) stands for the bis(Lewis base) ancillary ligand.
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cleavage should be facile with a low energy barrier of 0.4 kcal/
mol. The IRC result indicates that TS4−5 connects with
another intermediate 5, which lies 18.1 kcal/mol lower than 4.
Along with the cleavage of the B(1)−B(2) bond, the N(4)
atom with a lone pair is bonded to the C(1) atom next to the
N(1) atom of the pyridine ring with a single carbon−nitrogen
bond length of 1.534 Å (Figure 5). The C−N bond formation
in 5 is energetically favorable, because it avoids the high-energy
XN=NX structure.60 The natural atomic charges for B(1)
(+1.02) and N(3) (−0.35) atoms are computed. The N−N
bond distance of the complexed N2 moiety is elongated by ca.

0.1 Å from 4 to 5, whereas the B(2)−N(3) bond distance is
correspondingly decreased from 1.500 Å (for 4) to 1.382 Å
(for 5). Therefore, we can draw the conclusion that the
cleavage of the Bsp3−Bsp3 bond in TS4−5 would lead to the
activation of N≡N triple bonds, and this finding may be
ascribed to the formation of transient sp3-hybridized B− atom
that back-donates the electron density to the π* orbital of N2

(Figure 6).
The subsequent boryl transfer steps experienced by 5 finally

result in the release of a reduced nitrogen product (BMe2)2N−
N(BMe2)2 through a downhill energy pathway with low

Figure 2. Profile of Gibbs free energies (upper, in kcal/mol at 298.15 K and 1 atm pressure) and classical energies (lower, in kcal/mol) for the
assembly of 4 (R = Me). All structures were optimized in benzene.

Figure 3. Structures involved in the assembly of 4. The internuclear separations are given in Å. The methyl groups on the boron atoms are drawn in
wireframe for simplicity. All structures were optimized in benzene.
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Figure 4. Profile of Gibbs free energies (upper, in kcal/mol at 298.15 K and 1 atm pressure) and classical energies (lower, in kcal/mol) for 2,3′-
bipyridine-mediated reductive tetraboration of N2 (R = Me). All structures were optimized in benzene.

Figure 5. Structures accompanying 2,3′-bipyridine-mediated reductive tetraboration of N2. The internuclear separations are given in Å. The methyl
groups on the boron atoms are drawn in wireframe for simplicity. All structures were optimized in benzene.
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barriers (Figure 4). The Lewis basic N(3) atom in 5
approaches the Lewis acidic B(1) atom via the transition
state TS5−6 (with an energy barrier of 4 kcal/mol), giving an
intermediate 6, which is favored in energy with respect to 5 by
39.2 kcal/mol. The transition state TS6−7 involves both
N(4)−C(1) and B(4)−N(2) bond cleavage, and leads to
intermediate 7, an adduct of bipyridine 1 with (BMe2)2N−
N(BMe2)2. The cleavage of the C−N bond is energetically
favored in this step because two strong B−N−B conjugation
arrangements are obtained in the generated (BMe2)2N−
N(BMe2)2 moiety of intermediate 7. Thus, the step from 6
to 7 is exothermic by 38.2 kcal/mol. The final dissociation of
(BMe2)2N−N(BMe2)2 is expected to regenerate the starting
species 1, thereby affording a complete catalytic cycle (Figure
1). The production of (BMe2)2N−N(BMe2)2 (as shown in
Figure 4) experiences a substantial energy decrease of 80.5
kcal/mol, which provides the important chemical driving force
for the catalytic reaction.
The effects of temperature, pressure, and solvent on the

Gibbs free energies are included in this study, and these
conditions do not change the free energy span significantly
(Tables S3−S5 in SI). Table S3 shows that the free energy
span is from 22 kcal/mol at 273 K to 27 kcal/mol at 373 K,
with the low temperature slightly in favor of the reaction.
When the pressures increased from 1 to 2 atm, the energy span
changes by only 0.4 kcal/mol (Table S4 in SI), and the three
different solvents (benzene, trichloromethane, and dichlor-
ometnae) predict a very close energy span within 0.5 kcal/mol
(Table S5 in SI).

■ CONCLUSIONS
While the bonding interaction between diborane(4) and N2 is
reportedly weak, the present study suggests that a 2,3′-
bipyridine-anchored diborane pocket may be utilized in both
capturing an N2 molecule and in its activation. Our research
study unveils an unprecedented N2 activation mode: the
boron−boron bond cleavage of the Me2B-BMe2 moiety in 4
leading to a transient sp3-hybridized B− atom and donating
electron density to the π* orbital of N2. The complete catalytic
cycle includes both an assembly process (giving 4) and a boryl
transfer sequence (yielding the (BMe2)2N−N(BMe2)2 product
and regenerating the bipyridine 1). The corresponding energy
span of 23.3 kcal/mol (= 14.2 + 9.1) indicates that this
conversion is kinetically feasible under mild conditions. In
addition, this catalyzed reaction is thermodynamically
favorable with a reaction free energy of −80 kcal/mol. We
hope that the present study will provide strong motivation for
further studies on NRR.
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